F1F0 ATP Synthase–Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline

Author:

Yan Shijun1,Du Fang1,Wu Long1,Zhang Zhihua1,Zhong Changjia1,Yu Qing1,Wang Yongfu1,Lue Lih-Fen2,Walker Douglas G.2,Douglas Justin T.3,Yan Shirley ShiDu1

Affiliation:

1. Department of Pharmacology & Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS

2. Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ

3. Nuclear Magnetic Resonance Laboratory, Molecular Structures Group, School of Pharmacy, University of Kansas, Lawrence, KS

Abstract

Mitochondrial abnormalities are well known to cause cognitive decline. However, the underlying molecular basis of mitochondria-associated neuronal and synaptic dysfunction in the diabetic brain remains unclear. Here, using a mitochondrial single-channel patch clamp and cyclophilin D (CypD)-deficient mice (Ppif −/−) with streptozotocin-induced diabetes, we observed an increase in the probability of Ca2+-induced mitochondrial permeability transition pore (mPTP) opening in brain mitochondria of diabetic mice, which was further confirmed by mitochondrial swelling and cytochrome c release induced by Ca2+ overload. Diabetes-induced elevation of CypD triggers enhancement of F1F0 ATP synthase–CypD interaction, which in turn leads to mPTP opening. Indeed, in patients with diabetes, brain cypD protein levels were increased. Notably, blockade of the F1F0 ATP synthase–CypD interaction by CypD ablation protected against diabetes-induced mPTP opening, ATP synthesis deficits, oxidative stress, and mitochondria dysfunction. Furthermore, the absence of CypD alleviated deficits in synaptic plasticity, learning, and memory in diabetic mice. Thus, blockade of ATP synthase interaction with CypD provides a promising new target for therapeutic intervention in diabetic encephalopathy.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Aging

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3