Increased Phosphorylation of Akt Substrate of 160 kDa (AS160) in Rat Skeletal Muscle in Response to Insulin or Contractile Activity

Author:

Bruss Matthew D.1,Arias Edward B.2,Lienhard Gustav E.3,Cartee Gregory D.2

Affiliation:

1. Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin

2. Division of Kinesiology, University of Michigan, Ann Arbor, Michigan

3. Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire

Abstract

In 3T3-L1 adipocytes, insulin-stimulated GLUT4 translocation requires phosphorylation of the protein designated Akt substrate of 160 kDa (AS160). Both insulin and contractions activate Akt in skeletal muscle. Therefore, we assessed the effects in skeletal muscle of each stimulus on phosphorylation of proteins, including AS160, on the Akt phosphomotif. Isolated rat epitrochlearis muscles were incubated with insulin (for time course and dose response), stimulated to contract, or incubated with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) and used to assess the following: serine-phosphorylation of Akt (P-Akt), immunoreactivity with an antibody recognizing the Akt phosphomotif (α-phospho-[Ser/Thr] Akt substrate [PAS]), and PAS immunoreactivity of samples immunoprecipitated with anti-AS160. P-Akt peaked at 5 min of insulin, and PAS immunoreactivity subsequently peaked for proteins of 250 kDa (10 min) and 160 kDa (15 min). P-Akt, PAS-160, and PAS-250 increased significantly with 0.6 nmol/l insulin. Contractile activity led to increased P-Akt and PAS immunoreactivity of proteins of 160 and 250 kDa. The 160-kDa protein was confirmed to be AS160 based on elevated PAS immunoreactivity in AS160 immunoprecipitates. Wortmannin inhibited insulin (120 nmol/l) and contraction effects on AS160 phosphorylation. Incubation with AICAR caused increased phosphorylation of AMP-activated protein kinase and AS160 but not Akt. Our working hypothesis is that phosphorylation of these putative Akt substrates is important for some of the insulin and contraction bioeffects.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3