AICAR Administration Causes an Apparent Enhancement of Muscle and Liver Insulin Action in Insulin-Resistant High-Fat-Fed Rats

Author:

Iglesias Miguel A.1,Ye Ji-Ming1,Frangioudakis Georgia1,Saha Asish K.2,Tomas Eva1,Ruderman Neil B.2,Cooney Gregory J.1,Kraegen Edward W.1

Affiliation:

1. Garvan Institute of Medical Research, Sydney, New South Wales, Australia

2. Boston University School of Medicine, Boston, Massachusetts

Abstract

Exercise improves insulin sensitivity. As AMP-activated protein kinase (AMPK) plays an important role in muscle metabolism during exercise, we investigated the effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) on insulin action in insulin-resistant high-fat-fed (HF) rats. Rats received a subcutaneous injection of 250 mg/kg AICAR (HF-AIC) or saline (HF-Con). The next day, euglycemic-hyperinsulinemic clamp studies were performed. Glucose infusion rate during the clamp was enhanced (50%) in HF-AIC compared with HF-Con rats. Insulin-stimulated glucose uptake was improved in white but not in red quadriceps, whereas glycogen synthesis was improved in both red and white quadriceps of HF-AIC rats. HF-AIC rats also showed increased insulin suppressibility of hepatic glucose output (HGO). AICAR-induced responses in both liver and muscle were accompanied by reduced malonyl-CoA content. Clamp HGO correlated closely with hepatic triglyceride content (r = 0.67, P < 0.01). Thus, a single dose of AICAR leads to an apparent enhancement in whole-body, muscle, and liver insulin action in HF rats that extends beyond the expected time of AMPK activation. Whether altered tissue lipid metabolism mediates AICAR effects on insulin action remains to be determined. Follow-up studies suggest that at least some of the post-AICAR insulin-enhancing effects also occur in normal rats. Independent of this, the results suggest that pharmacological activation of AMPK may have potential in treating insulin-resistant states and type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3