Expression of mRNAs encoding uncoupling proteins in human skeletal muscle: effects of obesity and diabetes.

Author:

Bao S1,Kennedy A1,Wojciechowski B1,Wallace P1,Ganaway E1,Garvey W T1

Affiliation:

1. Department of Medicine, Medical University of South Carolina, Charleston 29425, USA.

Abstract

To explore the potential role of the uncoupling protein (UCP) family in human obesity and diabetes, we have used the reverse transcription-polymerase chain reaction to quantify UCP mRNA expression in human skeletal muscle. Levels of mRNA for UCP2, and for both short (UCP3S) and long (UCP3L) forms of UCP3, were highly correlated in individuals, indicating that gene transcription of these UCPs may be coordinately regulated by common mechanisms. In normal glucose-tolerant individuals, muscle UCP2 mRNA levels were positively correlated with percentage of body fat and with BMI (r = 0.6 and P < 0.05 for both). UCP3S mRNA levels were also positively correlated with percentage of body fat (r = 0.52, P < 0.05), and UCP3L mRNA tended to increase as a function of obesity (0.05 < P < 0.1). UCP mRNA levels, however, were not correlated with resting metabolic rate. UCP3S and UCP3L mRNA levels (P < 0.05) and the UCP2 mRNA level (P = 0.09) were increased by 1.8- to 2.7-fold in type 2 diabetes, an effect that could not be explained by obesity. No significant difference was found for UCP2, UCP3S, or UCP3L mRNA levels between insulin-sensitive and insulin-resistant nondiabetic subgroups. We conclude that 1) skeletal muscle mRNA levels encoding UCP2 and UCP3 are correlated among individuals and may be coordinately regulated; 2) UCP3 expression is not regulated by differential effects on UCP3L and UCP3S forms of the mRNA; and 3) UCP mRNA expression tends to increase in muscle as a function of obesity but not of resting metabolic rate or insulin resistance, and is increased in patients with type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3