Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise.

Author:

Biolo G1,Williams B D1,Fleming R Y1,Wolfe R R1

Affiliation:

1. Department of Internal Medicine, University of Texas Medical Branch, and the Shriners Burns Hospital, Galveston, USA.

Abstract

We have determined the individual and combined effects of insulin and prior exercise on leg muscle protein synthesis and degradation, amino acid transport, glucose uptake, and alanine metabolism. Normal volunteers were studied in the postabsorptive state at rest and about 3 h after a heavy leg resistance exercise routine. The leg arteriovenous balance technique was used in combination with stable isotopic tracers of amino acids and biopsies of the vastus lateralis muscle. Insulin was infused into a femoral artery to increase the leg insulin concentrations to high physiologic levels without substantively affecting the whole-body level. Protein synthesis and degradation were determined as rates of intramuscular phenylalanine utilization and appearance, and muscle fractional synthetic rate (FSR) was also determined. Leg blood flow was greater after exercise than at rest (P<0.05). Insulin accelerated blood flow at rest but not after exercise (P<0.05). The rates of protein synthesis and degradation were greater during the postexercise recovery (65+/-10 and 74+/-10 nmol x min(-1) x 100 ml(-1) leg volume, respectively) than at rest (30+/-7 and 46+/-8 nmol x min(-1) x 100 ml(-1) leg volume, respectively; P<0.05). Insulin infusion increased protein synthesis at rest (51+/-4 nmol x min(-1) x 100 ml(-1) leg volume) but not during the postexercise recovery (64+/-9 nmol x min(-1) x 100 ml(-1) leg volume; P<0.05). Insulin infusion at rest did not change the rate of protein degradation (48+/-3 nmol x min(-1) 100 ml(-1) leg volume). In contrast, insulin infusion after exercise significantly decreased the rate of protein degradation (52+/-9 nmol x min(-1) x 100 ml(-1) leg volume). The insulin stimulatory effects on inward alanine transport and glucose uptake were three times greater during the postexercise recovery than at rest (P<0.05). In contrast, the insulin effects on phenylalanine, leucine, and lysine transport were similar at rest and after exercise. In conclusion, the ability of insulin to stimulate glucose uptake and alanine transport and to suppress protein degradation in skeletal muscle is increased after resistance exercise. Decreased amino acid availability may limit the stimulatory effect of insulin on muscle protein synthesis after exercise.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3