Aldose Reductase Deficiency Prevents Diabetes-Induced Blood-Retinal Barrier Breakdown, Apoptosis, and Glial Reactivation in the Retina of db/db Mice

Author:

Cheung Alvin K.H.12,Fung Maggie K.L.12,Lo Amy C.Y.12,Lam Terence T.L.1,So Kwok Fai2,Chung Stephen S.M.13,Chung Sookja K.12

Affiliation:

1. Institute of Molecular Biology, The University of Hong Kong, Hong Kong, China

2. Department of Anatomy, The University of Hong Kong, Hong Kong, China

3. Department of Physiology, The University of Hong Kong, Hong Kong, China

Abstract

In 15-month-old db/db mice, signs of diabetic retinopathy, including blood-retinal barrier breakdown, loss of pericytes, neuro-retinal apoptosis, glial reactivation, and proliferation of blood vessels, were evident. These changes in the diabetic retina were associated with increased expression of aldose reductase (AR). To further understand the role of AR in the pathogenesis of diabetic retinopathy, we generated db/db mice with an AR null mutation (AR−/− db/db). AR deficiency led to fewer retinal blood vessels with IgG leakage, suggesting that AR may contribute to blood-retinal barrier breakdown. AR deficiency also prevented diabetes-induced reduction of platelet/endothelial cell adhesion molecule-1 expression and increased expression of vascular endothelial growth factor, which may have contributed to blood-retinal barrier breakdown. In addition, long-term diabetes-induced neuro-retinal stress and apoptosis and proliferation of blood vessels were less prominent in AR−/− db/db mice. These findings indicate that AR is responsible for the early events in the pathogenesis of diabetic retinopathy, leading to a cascade of retinal lesions, including blood-retinal barrier breakdown, loss of pericytes, neuro-retinal apoptosis, glial reactivation, and neovascularization.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3