The Human Glomerular Podocyte Is a Novel Target for Insulin Action

Author:

Coward Richard J.M.1,Welsh Gavin I.2,Yang Jing3,Tasman Candida1,Lennon Rachel1,Koziell Ania4,Satchell Simon1,Holman Geoffrey D.3,Kerjaschki Dontscho5,Tavaré Jeremy M.2,Mathieson Peter W.1,Saleem Moin A.1

Affiliation:

1. Academic and Children’s Renal Unit, University of Bristol, U.K

2. Department of Biochemistry, University of Bristol, U.K

3. Department of Biology and Biochemistry, University of Bath, U.K

4. Molecular Medicine Unit, Institute of Child Health, University College, London, U.K

5. Department of Clinical Pathology, University of Vienna, Vienna, Austria

Abstract

Microalbuminuria is significant both as the earliest stage of diabetic nephropathy and as an independent cardiovascular risk factor in nondiabetic subjects, in whom it is associated with insulin resistance. The link between disorders of cellular insulin metabolism and albuminuria has been elusive. Here, we report using novel conditionally immortalized human podocytes in vitro and human glomeruli ex vivo that the podocyte, the principal cell responsible for prevention of urinary protein loss, is insulin responsive and able to approximately double its glucose uptake within 15 min of insulin stimulation. Conditionally immortalized human glomerular endothelial cells do not respond to insulin, suggesting that insulin has a specific effect on the podocyte in the glomerular filtration barrier. The insulin response of the podocyte occurs via the facilitative glucose transporters GLUT1 and GLUT4, and this process is dependent on the filamentous actin cytoskeleton. Insulin responsiveness in this key structural component of the glomerular filtration barrier may have central relevance for understanding of diabetic nephropathy and for the association of albuminuria with states of insulin resistance.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3