Diabetes-Associated Sustained Activation of the Transcription Factor Nuclear Factor-κB

Author:

Bierhaus Angelika12,Schiekofer Stephan12,Schwaninger Markus1,Andrassy Martin12,Humpert Per M.2,Chen Jiang12,Hong Mei2,Luther Thomas3,Henle Thomas3,Klöting Ingrid4,Morcos Michael1,Hofmann Marion5,Tritschler Hans6,Weigle Bernd3,Kasper Michael3,Smith Mark7,Perry George7,Schmidt Ann-Marie5,Stern David M.5,Häring Hans-Ulrich2,Schleicher Erwin2,Nawroth Peter P.12

Affiliation:

1. Department of Medicine I and Department of Neurology, University of Heidelberg, Heidelberg, Germany

2. Department of Medicine IV, University Tübingen, Tübingen, Germany

3. Department of Anatomy, Department of Immunology, Department of Pathology and Institute of Food Chemistry, Technical University Dresden, Dresden, Germany

4. Department of Laboratory Animal Science, Institute of Pathophysiology, University Greifswald, Karlsburg, Germany

5. Columbia University, Department of Physiology, New York, New York

6. ASTA-Medica, Frankfurt am Main, Germany

7. Institute of Pathology, Case Western Reserve University, Cleveland, Ohio

Abstract

Activation of the transcription factor nuclear factor-κB (NF-κB) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-κB in vitro, we observed a long-lasting sustained activation of NF-κB in the absence of decreased IκBα in mononuclear cells from patients with type 1 diabetes. This was associated with increased transcription of NF-κBp65. A comparable increase in NF-κBp65 antigen and mRNA was also observed in vascular endothelial cells of diabetic rats. As a mechanism, we propose that binding of ligands such as advanced glycosylation end products (AGEs), members of the S100 family, or amyloid-β peptide (Aβ) to the transmembrane receptor for AGE (RAGE) results in protein synthesis–dependent sustained activation of NF-κB both in vitro and in vivo. Infusion of AGE-albumin into mice bearing a β-globin reporter transgene under control of NF-κB also resulted in prolonged expression of the reporter transgene. In vitro studies showed that RAGE-expressing cells induced sustained translocation of NF-κB (p50/p65) from the cytoplasm into the nucleus for >1 week. Sustained NF-κB activation by ligands of RAGE was mediated by initial degradation of IκB proteins followed by new synthesis of NF-κBp65 mRNA and protein in the presence of newly synthesized IκBα and IκBβ. These data demonstrate that ligands of RAGE can induce sustained activation of NF-κB as a result of increased levels of de novo synthesized NF-κBp65 overriding endogenous negative feedback mechanisms and thus might contribute to the persistent NF-κB activation observed in hyperglycemia and possibly other chronic diseases.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3