Prevention of autoimmune recurrence and rejection by adenovirus-mediated CTLA4Ig gene transfer to the pancreatic graft in BB rat.

Author:

Uchikoshi F1,Yang Z D1,Rostami S1,Yokoi Y1,Capocci P1,Barker C F1,Naji A1

Affiliation:

1. Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, USA.

Abstract

Type 1 diabetes is the result of a selective destruction of pancreatic islets by autoreactive T-cells. Therefore, in the context of islet or pancreas transplantation, newly transplanted beta-cells are threatened by both recurrent autoimmune and alloimmune responses in recipients with type 1 diabetes. In the present study, using spontaneously diabetic BB rats, we demonstrate that whereas isolated islets are susceptible to autoimmune recurrence and rejection, pancreaticoduodenal grafts are resistant to these biological processes. This resistance is mediated by lymphohematopoietic cells transplanted with the graft, since inactivation of these passenger cells by irradiation uniformly rendered the pancreaticoduodenal grafts susceptible to recurrent autoimmunity. We further studied the impact of local immunomodulation on autoimmune recurrence and rejection by ex vivo adenovirus-mediated CTLA4Ig gene transfer to pancreaticoduodenal grafts. Syngeneic DR-BB pancreaticoduodenal grafts transduced with AdmCTLA4Ig were rescued from recurrent autoimmunity. In fully histoincompatible LEW-->BB transplants, in which rejection and recurrence should be able to act synergistically, AdmCTLA4Ig transduced LEW-pancreaticoduodenal allografts enjoyed markedly prolonged survival in diabetic BB recipients. In situ reverse transcription-polymerase chain reaction revealed that transferred CTLA4Ig gene was strongly expressed in both endocrine and exocrine tissues on day 3. These results indicate the potential utility of local CD28-B7 costimulatory blockade for prevention of alloimmune and autoimmune destruction of pancreatic grafts in type 1 diabetic hosts.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3