Increased Efficiency of Fatty Acid Uptake Contributes to Lipid Accumulation in Skeletal Muscle of High Fat-Fed Insulin-Resistant Rats

Author:

Hegarty Bronwyn D.1,Cooney Gregory J.1,Kraegen Edward W.1,Furler Stuart M.1

Affiliation:

1. From The Diabetes and Metabolism Research Program, Garvan Institute of Medical Research, Sydney, Australia

Abstract

In humans and animal models, increased lipid content of skeletal muscle is strongly associated with insulin resistance. However, it is unclear whether this accumulation is due to increased uptake or reduced utilization of fatty acids (FAs). We used 3H-R-bromopalmitate tracer to assess the contribution of tissue-specific changes in FA uptake to the lipid accumulation observed in tissues of insulin-resistant, high fat-fed rats (HFF) compared with control rats (CON) fed a standard diet. To study FA metabolism under different metabolic states, tracer was infused under basal conditions, during hyperinsulinemic-euglycemic clamp (low FA availability) or during the infusion of intralipid and heparin (high FA availability). FA clearance was significantly increased in the red gastrocnemius muscle of HFF under conditions of low (HFF = 10.4 ± 1.1; CON = 7.4 ± 0.5 ml · min−1 · 100 g−1; P < 0.05), basal (HFF = 8.3 ± 1.4; CON = 4.5 ± 0.7 ml · min−1 · 100 g−1; P < 0.01), and high (HFF = 7.0 ± 0.8; CON = 4.3 ± 0.5 ml · min−1 · 100 g−1; P < 0.05) FA levels. This indicates an adaptation by muscle for more efficient uptake of lipid. Associated with the enhanced efficiency of FA uptake, we observed increases in CD36/FA translocase mRNA expression (P < 0.01) and acyl-CoA synthetase activity (P < 0.02) in the same muscle. FA clearance into white adipose tissue was also increased in HFF when circulating FA were elevated, but there was little effect of the high-fat diet on hepatic FA uptake. In conclusion, insulin resistance induced by feeding rats a high-fat diet is associated with tissue-specific adaptations that enhance utilization of increased dietary lipid but could also contribute to the accumulation of intramuscular lipid with a detrimental effect on insulin action.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3