Diabetes Accelerates Smooth Muscle Accumulation in Lesions of Atherosclerosis

Author:

Suzuki Lucy A.1,Poot Martin1,Gerrity Ross G.2,Bornfeldt Karin E.1

Affiliation:

1. Department of Pathology, University of Washington, Seattle, Washington

2. Department of Pathology, Medical College of Georgia, Augusta, Georgia

Abstract

In combination with other factors, hyperglycemia may cause the accelerated progression of atherosclerosis in people with diabetes. Arterial smooth muscle cell (SMC) proliferation and accumulation contribute to formation of advanced atherosclerotic lesions. Therefore, we investigated the effects of hyperglycemia on SMC proliferation and accumulation in vivo and in isolated arteries and SMCs by taking advantage of a new porcine model of diabetes-accelerated atherosclerosis, in which diabetic animals are hyperglycemic without receiving exogenous insulin. We show that diabetic animals fed a cholesterol-rich diet, like humans, develop severe lesions of atherosclerosis characterized by SMC accumulation and proliferation, whereas lesions in nondiabetic animals contain fewer SMCs after 20 weeks. However, high glucose (25 mmol/l) does not directly stimulate the proliferation of SMCs in isolated arterial tissue from diabetic or nondiabetic animals, or of cultured SMCs from these animals or from humans. Furthermore, the mitogenic actions of platelet-derived growth factor, IGF-I, or serum are not enhanced by high glucose. High glucose increases SMC glucose metabolism through the citric acid cycle and the pentose phosphate pathway by 240 and 90%, respectively, but <10% of consumed glucose is metabolized through these pathways. Instead, most of the consumed glucose is converted into lactate and secreted by the SMCs. Thus, diabetes markedly accelerates SMC proliferation and accumulation in atherosclerotic lesions. The stimulatory effect of diabetes on SMCs is likely to be mediated by effects secondary to the hyperglycemic state.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3