A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm

Author:

Matschinsky Franz M1

Affiliation:

1. Department of Biochemistry and Biophysics and Diabetes Research Center of the University of Pennsylvania Philadelphia, Pennsylvania

Abstract

Special features of glucose metabolism in pancreatic β-cells are central to an understanding of the physiological role of these cells in glucose homeostasis. Several of these characteristics are emphasized: a high-capacity system for glucose transport; glucose phosphorylation by the high-Km glucokinase (GK), which is rate-limiting for glucose metabolism and determines physiologically the glucose dependency curves of many processes in β-cell intermediary and energy metabolism and of insulin release and is therefore viewed as glucose sensor; remarkably low activity of lactate dehydrogenase and the presence of effective hydrogen shuttles to allow virtually quantitative oxidation of glycolytic NADH; the near absence of glycogen and fatty acid synthesis and of gluconeogenesis, such that intermediary metabolism is primarily catabolic; a crucial role of mitochondrial processes, including the citric acid cycle, electron transport, and oxidative phosphorylation with FoF1 ATPase governing the glucose-dependent increase of the ATP mass-action ratio; a Ca2+-independent glucose-induced respiratory burst and increased ATP production in β-cells as striking manifestations of crucial mitochondrial reactions; control of the membrane potential by the mass-action ratio of ATP and voltage-dependent Ca2+ influx as signal for insulin release; accumulation of malonyl-CoA, acyl-CoA, and diacylglycerol as essential or auxiliary metabolic coupling factors; and amplification of the adenine nucleotide, lipid-related, and Ca2+ signals to recruit many auxiliary processes to maximize insulin biosynthesis and release. The biochemical design also suggests certain candidate diabetes genes related to fuel metabolism: low-activity and low-stability GK mutants that explain in part the maturity-onset diabetes of the young (MODY) phenotype in humans and mitochondrial DNA mutations of FoF1 ATPase components thought to cause late-onset diabetes in BHEcdb rats. These two examples are chosen to illustrate that metabolic reactions with high control strength participating in β-cell energy metabolism and generating coupling factors and intracellular signals are steps with great susceptibility to genetic, environmental, and pharmacological influences. Glucose metabolism of β-cells also controls, in addition to insulin secretion and insulin biosynthesis, an adaptive response to excessive fuel loads and may increase the β-cell mass by hypertrophy, hyperplasia, and neogenesis. It is probable that this adaptive response is compromised in diabetes because of the GK or ATPase mutants that are highlighted here. A comprehensive knowledge of β-cell intermediary and energy metabolism is therefore the foundation for understanding the role of these cells in fuel homeostasis and in the pathogenesis of the most prevalent metabolic disease, diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 380 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3