Impaired Coupling of Glucose Signal to the Exocytotic Machinery in Diabetic GK Rats

Author:

Abdel-Halim Samy M1,Guenifi Amel1,Khan Akhtar1,Larsson Olof1,Berggren Per-Olof1,Ostenson Claes-Goran1,Efendic Suad1

Affiliation:

1. Endocrine and Diabetes Unit and Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute Stockholm, Sweden

Abstract

The GK rat is a spontaneous model of NIDDM. The insulin response to 16.7 mmol/l glucose was markedly impaired in both isolated perfused pancreas and isolated islets from GK rats compared with control Wistar rats. Depolarization with 30 mmol/l KC1 in the presence of 3.3 mmol/l glucose and 250 μmol/l diazoxide induced similar insulin responses in perfused pancreases of GK and control rats. In contrast, the glucose-stimulated insulin release was also severely impaired in GK pancreases in the depolarized state. Forskolin (1 μmol/l) markedly enhanced insulin release at 3.3 mmol/l glucose in GK but not control pancreases (54 ± 15 vs. 3 ± 1 pmol/l0 min, P < 0.001). Dibutyryl cAMP (1 mmol/l) exerted effects similar to forskolin on insulin release in the perfused pancreas. In depolarized pancreases of GK but not control rats, forskolin also induced a marked insulin response at 3.3 mmol/l glucose (163 ± 48 vs. 16 ± 1 pmol/20 min,< P < 0.03). Similarly, in studies on isolated islets from GK rats cultured in 5.5 or 16.7 mmol/l glucose for 48 h, forskolin (5 μmol/l) restored insulin release in response to 16.7 mmol/l glucose but had no effect on islet glucose utilization at 3.3 or 16.7 mmol/l glucose. Forskolin markedly stimulated insulin release at 3.3 mmol/l glucose in GK but not control rat islets cultured for 48 h in 5.5 mmol/l glucose, whereas 20 mmol/l arginine had an almost identical effect in both islet varieties. However, in islets cultured in 16.7 mmol/l glucose, forskolin stimulated insulin release similarly both in control and GK islets at 3.3 mmol/l glucose. In conclusion, this study suggests that the insulinotropic effects of glucose are coupled to a direct regulation of the exocytotic machinery in the pancreatic 3-cell. This pathway is markedly impaired in GK rats, contributing to defective insulin response to glucose. In this model, cAMP generation restores the insulin response to 16.7 mmol/l glucose and exerts a marked insulin release even at 3.3 mmol/l glucose.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3