Adiponectin-Induced Endothelial Nitric Oxide Synthase Activation and Nitric Oxide Production Are Mediated by APPL1 in Endothelial Cells

Author:

Cheng Kenneth K.Y.12,Lam Karen S.L.12,Wang Yu3,Huang Yu4,Carling David5,Wu Donghai6,Wong Chiwai6,Xu Aimin126

Affiliation:

1. Department of Medicine, University of Hong Kong, Hong Kong, China

2. Research Center of Heart, Brain Hormone and Healthy Aging, University of Hong Kong, Hong Kong, China

3. Genome Research Center and Department of Biochemistry, University of Hong Kong, Hong Kong, China

4. Department of Physiology, Chinese University of Hong Kong, Hong Kong, China

5. Cellular Stress Group, Medical Research Council (MRC) Clinical Sciences Centre, Imperial College, U.K

6. Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China

Abstract

Adiponectin protects the vascular system partly through stimulation of endothelial nitric oxide (NO) production and endothelium-dependent vasodilation. The current study investigated the role of two recently identified adiponectin receptors, AdipoR1 and -R2, and their downstream effectors in mediating the endothelium actions of adiponectin. In human umbilical vein endothelial cells, adiponectin-induced phosphorylation of endothelial NO synthase (eNOS) at Ser1177 and NO production were abrogated when expression of AdipoR1 and -R2 were simultaneously suppressed. Proteomic analysis demonstrated that the cytoplasmic tails of both AdipoR1 and -R2 interacted with APPL1, an adaptor protein that contains a PH (pleckstrin homology) domain, a PTB (phosphotyrosine-binding) domain, and a Leucine zipper motif. Suppression of APPL1 expression by RNA interference significantly attenuated adiponectin-induced phosphorylation of AMP-activated protein kinase (AMPK) at Thr172 and eNOS at Ser1177, and the complex formation between eNOS and heat shock protein 90, resulting in a marked reduction of NO production. Adenovirus-mediated overexpression of a constitutively active version of AMPK reversed these changes. In db/db diabetic mice, both APPL1 expression and adiponectin-induced vasodilation were significantly decreased compared with their lean littermates. Taken together, these results suggest that APPL1 acts as a common downstream effector of AdipoR1 and -R2, mediating adiponectin-evoked endothelial NO production and endothelium-dependent vasodilation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3