Adiponectin Suppression of High-Glucose–Induced Reactive Oxygen Species in Vascular Endothelial Cells

Author:

Ouedraogo Raogo1,Wu Xiangdong1,Xu Shi-Qiong1,Fuchsel Lauren1,Motoshima Hiroyuki1,Mahadev Kalyankar1,Hough Kelly1,Scalia Rosario2,Goldstein Barry J.1

Affiliation:

1. Dorrance Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania

2. Department of Physiology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

Adiponectin is an abundant adipocyte-derived plasma protein with antiatherosclerotic effects. Vascular signal transduction by adiponectin is poorly understood and may involve 5′-AMP–activated protein kinase (AMPK), cAMP signaling, and other pathways. Hyperglycemia sharply increases the production of reactive oxygen species (ROS), which play a key role in endothelial dysfunction in diabetes. Because the recombinant globular domain of human adiponectin (gAd) reduces the generation of endothelial ROS induced by oxidized LDL, we sought to determine whether adiponectin could also suppress ROS production induced by high glucose in cultured human umbilical vein endothelial cells. Incubation in 25 mmol/l glucose for 16 h increased ROS production 3.8-fold (P < 0.05), using a luminol assay. Treatment with gAd for 16 h suppressed glucose-induced ROS in a dose-dependent manner up to 81% at 300 nmol/l (P < 0.05). The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR; 1 mmol/l, 16 h) only partially decreased glucose-induced ROS by 22% (P < 0.05). Cell pretreatment with AMPK inhibitors, however, failed to block the effect of gAd to suppress glucose-induced ROS, suggesting that the action of gAd was independent of AMPK. Interestingly, activation of cAMP signaling by treatment with forskolin (2 μmol/l) or dibutyryl-cAMP (0.5 mmol/l) reduced glucose-induced ROS generation by 43 and 67%, respectively (both P < 0.05). Incubation with the cAMP-dependent protein kinase (PKA) inhibitor H-89 (1 μmol/l) fully abrogated the effect of gAd, but not that of AICAR, on ROS induced by glucose. gAd also increased cellular cAMP content by 70% in an AMPK-independent manner. Full-length adiponectin purified from a eukaryotic expression system also suppressed ROS induced by high glucose or by treatment of endothelial cells with oxidized LDL. Thus, adiponectin suppresses excess ROS production under high-glucose conditions via a cAMP/PKA-dependent pathway, an effect that has implications for vascular protection in diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3