Cellular Mechanism of Action of Metformin

Author:

Klip Amira1,Leiter Lawrence A1

Affiliation:

1. Division of Cell Biology, The Hospital for Sick Children, and the Department of Medicine, St. Michael's Hospital Toronto, Ontario, Canada

Abstract

Metformin is a hypoglycemic drug effective in the treatment of non-insulin-dependent diabetes mellitus and increasingly used in Canada and Europe. Effects on intestinal glucose absorption, insulin secretion, and hepatic glucose production are insufficient to explain its hypoglycemic action, with most evidence suggesting that the major effect of the drug is on glucose utilization. In vivo and in vitro studies have demonstrated that metformin stimulates the insulininduced component of glucose uptake into skeletal muscle and adipocytes in both diabetic individuals and animal models. This increase is more significant in diabetic than in nondiabetic animals, suggesting an enhanced action of the drug in the hyperglycemic state. The increase in glucose uptake is also reflected in an increase in the insulin-dependent portion of glucose oxidation. Potential sites of action of metformin are the insulin receptor and the glucose transporters. Although metformin increases insulin binding in various cell types, this effect is not universal and does not correlate with stimulation of glucose utilization. In contrast, direct effects of the drug on the glucose-transport system have been demonstrated. Metformin elevates the uptake of nonmetabolizable analogues of glucose in both nondiabetic rat adipocytes and diabetic mouse muscle. In the latter, the stimulatory effect of the drug is additive to that of insulin. In human and rat muscle cells in culture, metformin increases glucose-analogue transport independently of and additive to insulin, suggesting an insulin-independent action. Most of these results suggest that the basis for the hypoglycemic effect of this biguanide is probably at the level of skeletal muscle by increasing glucose transport across the cell membrane.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3