New Insights on Oxidative Stress and Diabetic Complications May Lead to a “Causal” Antioxidant Therapy

Author:

Ceriello Antonio1

Affiliation:

1. From the Department of Pathology and Medicine, Experimental and Clinical, Chair of Internal Medicine, University of Udine, Udine, Italy

Abstract

Evidence implicates hyperglycemia-derived oxygen free radicals as mediators of diabetic complications. However, intervention studies with classic antioxidants, such as vitamin E, failed to demonstrate any beneficial effect. Recent studies demonstrate that a single hyperglycemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain seems to be the first and key event in the activation of all other pathways involved in the pathogenesis of diabetic complications. These include increased polyol pathway flux, increased advanced glycosylation end product formation, activation of protein kinase C, and increased hexosamine pathway flux. Superoxide overproduction is accompanied by increased nitric oxide generation, due to an endothelial NOS and inducible NOS uncoupled state, a phenomenon favoring the formation of the strong oxidant peroxynitrite, which in turn damages DNA. DNA damage is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose) polymerase. Poly(ADP-ribose) polymerase activation in turn depletes the intracellular concentration of its substrate NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, and produces an ADP-ribosylation of the GAPDH. These processes result in acute endothelial dysfunction in diabetic blood vessels that, convincingly, also contributes to the development of diabetic complications. These new findings may explain why classic antioxidants, such as vitamin E, which work by scavenging already-formed toxic oxidation products, have failed to show beneficial effects on diabetic complications and may suggest new and attractive “causal” antioxidant therapy. New low–molecular mass compounds that act as SOD or catalase mimetics or l-propionyl-carnitine and lipoic acid, which work as intracellular superoxide scavengers, improving mitochondrial function and reducing DNA damage, may be good candidates for such a strategy, and preliminary studies support this hypothesis. This “causal” therapy would also be associated with other promising tools such as LY 333531, PJ34, and FP15, which block the protein kinase β isoform, poly(ADP-ribose) polymerase, and peroxynitrite, respectively. While waiting for these focused tools, we may have other options: thiazolinediones, statins, ACE inhibitors, and angiotensin 1 inhibitors can reduce intracellular oxidative stress generation, and it has been suggested that many of their beneficial effects, even in diabetic patients, are due to this property.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3