Molecular Basis for HLA-DQ Associations With IDDM

Author:

Nepom Gerald T1,Kwok William W1

Affiliation:

1. University of Washington School of Medicine and the Virginia Mason Research Center Seattle, Washington

Abstract

Autoimmune diabetes is the clinical end point for a sequential cascade of immunologic events that occur in a genetically susceptible individual. Structural and functional analysis of the HLA class II susceptibility genes in IDDM suggests likely molecular mechanisms for several of the key steps in this cascade of autoimmune events. We outline a pathway in which the HLA-DQ genes associated with IDDM bias the immunologic repertoire toward autoimmune specificities, creating an autoimmune-prone individual, followed by amplification and triggering events that promote subsequent immune activation. There are several direct links between genetics and autoimmune disease in this pathway: the developmental maturation of T-cells in a genetically susceptible individual occurs through molecular interactions between the T-cell receptor and the HLApeptide complex. Selection of T-cells with receptors likely to contribute to autoreactivity may preferentially occur in the context of specific HLA-DQ alleles that are diabetes prone, because of inefficiencies in the peptide-MHC structural interactions of these molecules. Subsequent activation of these T-cells in the context of recognizing islet-associated antigens can trigger a poorly regulated immune response that results in progressive islet destruction. These subsequent diabetes-specific events are also directed by specific HLA genes, most prominently by the binding of specific antigenic peptides by the disease-associated HLA molecules. In this sequential cascade, opportunities for environmental influences and modulation by non-HLA genes are identified that likely act in concert with the predominant genetic susceptibility contributed by the HLA molecules themselves. Clarification of the steps in this pathway extends our understanding of the prevailing role of HLA genes in IDDM pathogenesis and suggests opportunities to intervene at discrete initiating, disease-promoting, or regulatory steps in IDDM development.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3