High-Fat Diet Causes Mitochondrial Dysfunction as a Result of Impaired ADP Sensitivity

Author:

Miotto Paula M.1ORCID,LeBlanc Paul J.2,Holloway Graham P.1

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada

2. Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada

Abstract

Although molecular approaches altering mitochondrial content have implied a direct relationship between mitochondrial bioenergetics and insulin sensitivity, paradoxically, consumption of a high-fat (HF) diet increases mitochondrial content while inducing insulin resistance. We hypothesized that despite the induction of mitochondrial biogenesis, consumption of an HF diet would impair mitochondrial ADP sensitivity in skeletal muscle of mice and therefore manifest in mitochondrial dysfunction in the presence of ADP concentrations indicative of skeletal muscle biology. We found that HF consumption increased mitochondrial protein expression; however, absolute mitochondrial respiration and ADP sensitivity were impaired across a range of biologically relevant ADP concentrations. In addition, HF consumption attenuated the ability of ADP to suppress mitochondrial H2O2 emission, further suggesting impairments in ADP sensitivity. The abundance of ADP transport proteins were not altered, but the sensitivity to carboxyatractyloside-mediated inhibition was attenuated after HF consumption, implicating alterations in adenine nucleotide translocase (ANT) ADP sensitivity in these observations. Moreover, palmitoyl-CoA is known to inhibit ANT, and modeling intramuscular palmitoyl-CoA concentrations that occur after HF consumption exacerbated the deficiency in ADP sensitivity. Altogether, these data suggest that an HF diet induces mitochondrial dysfunction secondary to an intrinsic impairment in mitochondrial ADP sensitivity that is magnified by palmitoyl-CoA.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3